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METHOD AND APPARATUS FOR SECURE CONFIGURATION OF A FIELD
PROGRAMMABLE GATE ARRAY

Background of the Invention

This invention relates to integrated circuits such as field programmable gate arrays
which contain an on-chip volatile program memory which must be loaded from an off-
chip nonvolatile memory when power is applied before normal operation of the device
can commence. And more specifically, the invention relates to secure configuration

and security features for field programmable gate arrays.

Field programmable gate arrays (FPGAs) constitute a commercially important class of
integrated circuit which are programmed by the user to implement a desired logic
function. FPGAs include user-configurable logic that is programmable by a user to
implement the user’s designed logic functions. This user programmability is an
important advantage of FPGAs over conventional mask programmed application
specific integrated circuits (ASICs) since it reduces risk and time to market.

The function of the FPGA is determined by configuration information stored on the chip.
Several technologies have been used to implement the configuration store: most
notably static random access memory (SRAM), antifuse and Flash erasable
programmable read only memory (EPROM). The SRAM programmed FPGAs have
dominated in the marketplace since they have consistently offered higher density and
operating speed than devices using the other control store technologies. SRAM
devices can be implemented on standard complementary metal oxide semiconductor
(CMOS) process technology whereas antifuse and Flash EPROM technologies require
extra processing steps. SRAM devices are normally built on process technology a
generation ahead of that used in the other devices. For example, today the most
advanced SRAM programmed FPGAs are available implemented on 0.18 micron
technology whereas the most advanced nonvolatile FPGAs are on 0.25 micron
technology. The smaller transistors available on the advanced processes provide a

speed and density advantage to SRAM
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programmed FPGAs. Additional details of the operation of FPGAs and their control
memory are given in standard textbooks including John V. Oldfield and Richard C. Dorf
"Field Programmable Gate Arrays", published by Wiley-Interscience in 1995.

Unlike antifuse and FLASH EPROM which maintain their state after
power is turned off, SRAM is a volatile memory which loses all information on power |
off. Therefore, SRAM programmed FPGAs must have a configuration bitstream loaded
into them immediately after power is applied: normally this configuration information
comes from a serial EPROM. A serial EPROM is a small, nonvolatile memory device
which is often placed adjacent to the FPGA on the board and which is connected to it by a
small number of wires. The programming information may also come from a parallel
access EPROM or other type of memory or a microprocessor according to the
requirements of the system containing the FPGA. ‘

A shortcoming of FPGAs, especially SRAM programmed FPGAs, is a
lack of security of the user's design because the configuration bitstreams may be
monitored as they are being input into the FPGA. This security issue is one of the few
remaining advantages of FPGAs based on nonvolatile memory over SRAM programmed
FPGA:s. It is very difficult to “clone” a product containing a mask programmed ASIC or
one of the nonvolatile FPGAs. Cloning an ASIC involves determining the paﬂeminé
information on each mask layer which requires specialist equipment and a significant
amount of time. It is also difficult to copy configuration information loaded into the
nonvolatile FPGA technologies after their “security fuses” have been blown—thus these
devices are attractive to customers who have concerns about their design being pirated or
reverse engineered. Vendors of FPGAs which use nonvolatile programming memory
often refer to the security advantages of their technology over SRAM programmed parts
in their marketing literature. As an example, "Protecting Your Intellectual Property from
the Pirates" a presentation at DesignCon 98 by Ken Hodor, Product Marketing Manager
at Actel Corporation gives the view of the major vendor of antifuse FPGAs on the relative
security of antifuse, FLASH and SRAM based FPGAs.

This security problem of SRAM FPGAs has been well known in the
industry for at least 10 years and to date no solution attractive enough to be incorporated
in a commercial SRAM FPGA has been found. Some users of SRAM FPGAs have
implemented a battery back up system which keeps the FPGA powered on in order to
preserve its configuration memory contents even when the system containing the FPGA is

powered off. The FPGA bitstream is loaded before the equipment containing it is shipped
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to the end user preventing unauthorised access to the bitstream information. Present
day FPGAs have a relatively high power consumption even when the user logic is not
operating: which limits the life span of the battery back up. If power is lost for even a
fraction of a second the system the FPGA control memory will no longer be valid and
the system will cease to function. This raises concerns about the reliability of a system
which uses this technique. Thus, this prior art approach to protecting FPGA bitstreams

is only applicable to a small fraction of FPGA applications.

As can be appreciated, there is a need for improved techniques and circuitry for secure
configuration of FPGAs.

Summary of the Invention

In accordance with an aspect of the present invention, there is provided a field
programmable gate array comprising: a serial interface for loading initial configuration
and key information; an on-chip memory for storing the cryptographic key, wherein the
on-chip memory is to be coupled to an external backup battery; a triple-DES encryption
circuit; and an interface to an external non-volatile memory for storing encrypted

configuration data.

In accordance with a second aspect of the present invention, there is provided a
method for securely configuring an FPGA comprising: loading key information into an
on-chip register, wherein the on-chip register is to be connected to an external backup
battery; loading an initial configuration through a JTAG interface; and storing an

encrypted version of the configuration in an external non-volatile memory.

In accordance with a third aspect of the present invention, there is provided a field
programmable gate array comprising: a plurality of static random access memory cells
to store a configuration of user-configurable logic of the field programmable gate array;
an ID register to store a security key; a decryption circuit to receive and decrypt a
stream of encrypted configuration data using the security key, and generate decrypted
configuration data for configuring the static random access memory cells; a first
positive supply input pin coupled to the static random access memory cells, user-
configurable logic, and decryption circuit; and a second positive supply input pin
coupled to the ID register, wherein the second positive supply input is to be connected
to an external backup battery.
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In accordance with a fourth aspect of the present invention, there is provided a circuit
comprising: a field programmable gate array, comprising: a plurality of static random
access memory cells to store a configuration of user-configurable logic of the field
programmable gate array; an ID register to store a security key; a security circuit to
receive and process a stream of configuration data using the security key; a first
positive supply input pin coupled to the static random access memory cells, user-
configurable logic, and security circuit; and a second positive supply input pin coupled
to the ID register; a power supply connected to the first positive supply input pin, to
provide operating power to the static random access memory cells, user-configurable
logic, and security circuit; and a battery connected to the second positive supply input
pin, to provide power to the ID register.
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Further features and advantages of the invention will become apparent from a
consideration of the drawings and ensuing description.

Brief Description of the Drawings

Figure 1 shows a prior-art structure for configuring an FPGA from an external memory.

Figure 2 shows a prior-art structure for configuring a microcontroller with on-chip
program and data memory from an external memory.

Figure 3 shows a prior-art structure for configuring a Configurable System on Chip
integrated circuit from an external memory.

Figure 4 shows a prior-art structure for securely programming an FPGA.

Figure 5 shows a secure FPGA according to this invention.

Figure 6 shows a bitstream format for a secure FPGA according to this invention.

Figure 7 shows a layout for an FPGA in which the device ID register is battery backed.
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Figure 8 shows a secure FPGA which can download configuration data

from a communications network.

DETAILED DESCRIPTION

Figure 1 shows a prior art SRAM programmed FPGA 10 connected to a |
memory chip 30 via a set of signal traces 20 on a printed circuit board. Configuration
circuitry 12 on the FPGA loads programming data from memory 30 into on-chip -
configuration memory 14. Resources on the FPGA not related to programming (such as
the logic gates and routing wires which implement the user design) are not shown in this
or subsequent illustrations for reasons of clarity but are well understood and are described
in manufacturer’s literature such as Xilinx Inc. "Virtex 2.5V Field Programmable Gate
Arrays,” Advanced Product Specification, 1998 and the Oldfield and Dorf textbook
mentioned above. Set of signals 20 will normally include a data signal to transfer
configuration information, a clock signal to synchronize the transfer and several control
signals to specify a particular mode of transfer (for example when a sequence of FPGAs
can be “daisy chained” to a single source of programming data). The exact number and
function of programming signals 20 varies from manufacturer to manufacturer and
product line to product line. The specific signals for a market-leading FPGA product are
documented in the Xilinx literature cited above.

Programming signals 20 can be monitored by a malicious party who can
then make a copy of the bitstream transferred across them. This could be done, for
example, by attaching a probe or probes from a logic analyzer to those pins of FPGA 10
concerned with the programming interface.

Figure 2 shows a prior art microcontroller 40 which contains configuration
circuitry 12 to load initial values for an on-chip memory block 42 from a serial EPROM
on power up. On-chip memory 42 may contain a program to be executed by the
microcontroller or data tables for use by the microcontroller. Depending on the
microcontroller architecture it might be convenient for memory 42 to be composed of
several smaller memories: for example there may be separate memories for program code
and data. The function of configuration circuitry 42 may be wholly or partly implemented
by software running on the microcontroller and stored in an on-chip mask programmed
Read Only Memory (ROM). The security problem is the same as that faced by the FPGA:
an attacker can copy the programming information as it passes between the external

memory and the microcontroller on chip SRAM memory.

P
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Recently, Configurable System on Chip (CSoC) devices have become
available commercially which contain both a microcontroller with a volatile on-chip
program memory and a block of SRAM programmed logic: both the microcontrolier
program memory and the programmable logic configuration memory must be loaded
from an external nonvolatile memory on power on. Details of one such device are given
in Triscend Corporation, "Triscend E5 Configurable Processor Family," Product
Description (Preview), July 1999. The Triscend CSoC can be programmed from a serial
EPROM in the same way as an FPGA but also offers a convenient additional feature
illustrated in Figure 3. Configuration data can be downloaded to the CSoC 50 through an
industry standard Joint Test Action Group (JTAG) interface and the CSoC itself can then
program an In System Programmable (ISP) external memory 32 with the data. The
external memory could be an SRAM but would normally be a serial or parallel EPROM
or Flash EPROM. The CSoC implements the programming algorithm for the nonvolatile

memory: the on chip-microcontroller allows CSoC devices to implement relatively

- complex configuration algorithms in software. This feature simplifies manufacturing a

system containing a CSoC since the ISP memory chip 32 need not be programmed prior
to installation on the Printed Circuit Board (PCB).

There are two main ways in which a malicious party might make use of
captured bitstream information . The more serious threat, at the present time, is that a
pirate may simply copy the bitstream information and use it unchanged to make
unauthorized copies or “clones” of the product containing the FPGA without any
understanding of how the FPGA implements its function. The second threat is that the
attacker might “reverse engineer” the design being loaded into the FPGA from bitstream
information. Reverse engineering an FPGA design would require significant effort
because automated tools for extracting design information from the bitstream are not
generally available. Should such tools be created and distributed in the future reverse
engineering would become a very serious threat.

This security issue is one of the few remaining advantages of FPGAs
based on nonvolatile memory over SRAM programmed FPGAs. It is very difficult to
“clone” a product containing a mask programmed ASIC or one of the nonvolatile FPGAs.
Cloning an ASIC involves determining the patterning information on each mask layer
which requires specialist equipment and a significant amount of time. It is also difficult to
copy configuration information loaded into the nonvolatile FPGA technologies after their

“security fuses” have been blown—thus these devices are attractive to customers who

/g'/’
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have concerns about their design being pirated or reverse engineered. Vendors of FPGAs
which use nonvolatile programming memory often refer to the security advantages of
their technology over SRAM programmed parts in their marketing literature. As an
example, "Protecting Your Intellectual Property from the Pirates" a presentation at
DesignCon 98 by Ken Hodor, Product Marketing Manager at Actel Corporation gives the,
view of the major vendor of antifuse FPGAs on the relative security of antifuse, FLASH
and SRAM based FPGAs.

This security problem of SRAM FPGAs has been well known in the
industry for at least 10 years and to date no solution attractive enough to be incorporated
in a commercial SRAM FPGA has been found. Some users of SRAM FPGAs have
implemented a battery back up system which keeps the FPGA powered on in order to
preserve its configuration memory contents even when the system ’containing the FPGA is
powered off. The FPGA bitstream is loaded before the equipment containing it is shipped

to the end user preventing unauthorized access to the bitstream information. Present day

- FPGAs have a relatively high power consumption even when the user logic is not

operating: which limits the life span of the battery back up. If power is lost for even a
fraction of a second the system the FPGA control memory will no longer be valid and the
system will cease to function. This raises concerns about the reliability of a system which
uses this technique. Thus, this prior art approach to protecting FPGA bitstreams is only
applicable to a small fraction of FPGA apphcatlons

There are two main problems which have up till now prevented the
industry from introducing security to SRAM programmed FPGAs.

Firstly, in order to provide security against pirated bitstreams, it is
necessary that FPGAs are in some way different from each other and this difference must
be present and consistent even after power is removed and restored. Only if the FPGAs
are different in some way can it be assured that a bitstream intended for one FPGA and
copied by a pirate will not function on a second FPGA in the “cloned” product. The most
practical way to make the two FPGAs different is to provide a small nonvolatile memory
on the device which contains a unique value.

The need for a nonvolatile memory to support security appears to remove
the advantages that SRAM FPGAs have over antifuse or FLASH based FPGAs. If one
can implement nonvolatile memory to store a unique identifier then it seems as if one
could use it for all the configuration information. However, memory to store an identifier

will require at most a few kilobits of nonvolatile memory where the device configuration

g8
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memory may require several megabits on a state of the art device. There is also no need
for the identifier memory to be high performance since it will rarely be accessed. Thus, it
is possible to use circuit techniques which are compatible with normal CMOS processing
for the nonvolatile memory but which result in memories which are relatively inefficient
in terms of speed and density. In the simplest case the nonvolatile memory might be a set
of conductive links which are selectively cut using a laser after manufacture in order to
give each device a unique identifier.

A second problem with implementing a unique identifier on every FPGA
and using this identifier to prevent a bitstream for one FPGA from successfully
configuring a second is that it seriously complicates the manufacturing of equipment
containing the FPGAs. It is necessary to create a different bitstream for each FPGA based
on its unique identifier: therefore the CAD tools must keep track of the unique identifier
of the device to be configured. This can cause serious inconvenience to the user and
manufacturer of the FPGA.

Figure 4 shows an FPGA with security circuitry 64 and an on-chip
nonvolatile ID memory 62. Security circuitry 64 is coupled between off-chip nonvolatile
storage 30 and configuration circuitry 12 and is also coupled to the nonvolatile ID
memory 62. The device manufacturer installs a unique key in the ID memory at the time
of manufacture and provides this key to the customer who purchases the FPGA. The
customer can then use this key to create a security enhanced encrypted bitstream for this
particular FPGA and program this bitstream into serial EPROM. When configuration data
is loaded into the FPGA security circuitry decrypts and verifies it using the key data in ID
memory 62. In this case a malicious party who copied the bitstream passing between the
FPGA and microcontroller would not be able to use this information to make a pirate
copy of the user's equipment (since the secure FPGA bitstream would only configure the
particular FPGA it was generated for). If the security algorithm involved encrypting the
bitstream it would also be impossible or very difficult for the malicious party to reverse
engineer the customer design.

This form of bitstream security causes inconvenience to both the FPGA
manufacturer and customers. The manufacturer faces the following problems:

1. The FPGAs now require a customization stage after manufacturing
to individualize the ID memory. This may involve, for example, cutting metal traces with

a laser, or programming on chip antifuses or floating gate memory cells.
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2. After customization the chips require a customized programming
stream. This complicates testing since it is no longer possible to use identical vectors for
each chip.

3. A security system must be put in place in the manufacturer's
facility to protect the identifiers being installed into the chips.

4, . The manufacturer must have a secure delivery method for
supplying the secret identifiers to the customers who purchased the FPGAs in an easy to
use manner. It must also be easy for the customer to match the identifiers supplied with
the particular device being programmed in an automated manufacturing environment.

The customer also faces additional problems:

1. The customer must provide a secure environment for handling and
storing the device IDs. '

2. The customer must have a database or other system which allows

them to find the correct ID for a given chip each time it is to be reprogrammed and supply

- the ID to the bitstream generation Computer Aided Design (CAD) program. This will be

of particular concern in the development process or when making improvements or
corrections to products in the field.

3. It is not possible to batch program many serial EPROMs with a
common configuration prior to assembly onto the printed circuit board. The fact that each
serial EPROM must contain a different configuration thus complicates equipment
manufacturing. '

4, The customer must trust the FPGA manufacturer since the
manufacturer has access to the ID information and could, in theory, decrypt the bitstream
for any customer design.

It can be seen that keeping the device IDs secure is a significant practical
problem which would cause considerable inconvenience to FPGA manufacturers and
their customers. The security infrastructure makes it harder to make use of one of the
benefits of SRAM based FPGAs: their ability to be reprogrammed many times. Standard
FPGAs with no bitstream security do not require tracking of individual chip ID codes in
order to create a usable bitstream. The fact that the device IDs must be stored on
computer systems at both the FPGA manufacturer and customer and kept available in
case reprogramming is required potentially compromises security by providing

opportunities for unauthorized access to key information.

1



10

15

20

25

30

WO 01/46810 PCT/GB00/04988

Although the above discussion has focussed on FPGAEs, since these are the
most commercially important class of integrated circuit which make use of a volatile
on-chip program memory it is applicable to any integrated circuit which must load an
on-chip volatile program memory from an off-chip nonvolatile memory. This might
include other forms of programmable logic such as Complex Programmable Logic
Devices, routing chips such as Field Programmable Interconnect Components (FPICs) or
microcontrollers which use a block of on chip SRAM to store program code. It would
also be applicable to hybrid components like the CSoC mentioned above which had more
than one class of SRAM programmed circuit: for example chips which contain a
microcontroller and an SRAM programmed FPGA.. It would be obvious to one skilled in
the art that the method of securely configuring an FPGA described here could equally
well be applied to these other classes of component. |

Figure 5 shows an improved secure FPGA 70 according to this invention
which provides the security of the FPGA 60 in figure 4 without compromising ease of

- use. For reasons of clarity resources on the FPGA not related to programming are not

shown. Random number generator 72 is coupled to the security circuitry 64 and can be
used to generate a random ID code. Such a code should be at least 40 bits long and would
preferably be between 100 and 200 bits. The ID code acts as a cryptographic key and the
normal considerations applicable to choosing the length of a cryptographic key would
apply. As compute power increases in the future longer keys lengths may be required.
With a sufficiently long ID code and a high quality random number generator it is
extremely unlikely that two FPGAs would generate the same ID. Security circuitry 64
can load the ID code into the device ID register 62 and it can also read the ID code from
the register when required. The device ID register is nonvolatile and its contents are
preserved when the power is removed from the FPGA. Only the security circuitry 64 can
access the output of the ID register: the value stored in the ID register is never available
off-chip. Security circuitry 64 is also coupled to the off chip nonvolatile ISP memory 32
and the configuration circuitry 12. Security circuitry 64 and configuration circuitry 12
process data coming from the off chip memory prior to writing it to the on-chip memory
in the same way as the system of figure 4. Additionally, in the improved secure FPGA 70,
security circuitry 64 and configuration circuitry 12 can also process data read out of on
chip configuration memory 14 encrypt it and write it to the off chip in-system
programmable memory 32 through signals 20. This encryption can use the ID vaiue
stored in the ID register as a key. Status Register 74 is provided in a preferred

!
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embodiment as a small nonvolatile memory for use by the security circuitry to store the
configuration status of the device while power is not applied, this allows extra flexibility
in device configuration. |

To appreciate the benefit of the structure presented in figure 5 it is
necessary to consider the various stages in the life of an SRAM FPGA chip. As an
illustration we will assume that the FPGA chip is sold to a customer in the computer
networking industry who uses it in an Internet Protocol (IP) router product. This example
is provided only to make the concepts being discussed more concrete, the invention is not
limited to any particular application area of FPGA chips.

1. Manufacture. When it leaves the manufacturer's premises the
FPGA is completely functional but does not contain any kind of proprietary design. Thus,
there is no need to be concerned that bitstream information might be copied or pirated at
this stage.

2. Customer Programming. The FPGA customer installs the FPGA

- chip in equipment which is to be supplied to its own customers (the “end users™ of the
FPGA). For example, in this case the FPGA chip might be installed on a printed circuit
board which forms part of an IP router. This customer must also develop a proprietary
design to configure the FPGA to implement the functions required by the IP router and
store the bitstream (created using Computer Aided Design (CAD) tools supplied by the
FPGA manufacturer) in a nonvolatile memory within the system. It is this bitstream
information which must be protected from piracy or reverse engineering. .

3. End User. The FPGA customer supplies their IP router product to
an end user. After it leaves the FPGA customer's premises the equipment containing the
FPGA may fall into the hands of a malicious party who wishes to pirate or reverse
engineer the customer FPGA design. A pirate who obtains a copy of the bitstream could
then build “clones” of the customer's IP protocol router product containing FPGAs which
were loaded with the pirated bitstream.

As described above the purpose of the security circuitry is to prevent
sensitive information from appearing on signals 20 which may be monitored by a
malicious party. However, as can be seen from the description of the FPGAs lifecycle this
is only a concern after the equipment containing the FPGA leaves the FPGA customer’s
facility. The FPGA customer has created the design in the FPGA and can access all the
CAD files (including schematics or VHDL source and the bitstream itself) associated

A
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with it, therefore, there is no reason to protect the FPGA bitstream while the FPGA is
within the customer's premises.

Normally, an FPGA customer will power up a system containing an FPGA
in their facility prior to shipping it to the end user in order to test that it is functional. If
the customer always powers on the equipment within his facility before shipping the
equipment the signals 20 may transmit sensitive information the first time the FPGA is
powered up in the system, however, subsequent transfers of data across the signals 20
must be protected.

This observation leads to a method for using the structure of figure 5 to
implement bitstream security consisting of the following steps:

1. The customer places a standard, insecure, FPGA bitstream in the
nonvolatile memory. This bitstream contains a small amount of header information which
indicates to the FPGA that it is an insecure bitstream but should be converted into a
secure one.

2. The FPGA security circuitry loads the FPGA bitstream and
determines, based on the header information, that security must be applied. It also
determines that the bitstream is insecure and passes it directly to the FPGA configuration
circuitry without change. 3

3. The FPGA security circuitry causes the random number generator
to create a new key and loads this key into the device ID register.

4, After the entire FPGA is configured the security circuitry reads
back the bitstream information from the configuration memory and processes it, based on
the key information in the device ID register, to form a secure bitstream. This secure
bitstream is then written back to the off chip nonvolatile memory overwriting and
obliterating the original insecure bitstream information. The header information on this
new secure bitstream is changed to indicate that it is a secure bitstream.

After this step a link has been established between the FPGA and the off
chip nonvolatile memory: the bitstream in the off chip memory will not successfully
configure any other FPGA. The unencrypted form of the bitstream is no longer present in
the external memory. Since the bitstream is encrypted accessing the bitstream will not
help in reverse engineering the user design. After these steps the FPGA is properly
configured and operating normally allowing the equipment to be tested. Power will be
removed before the product containing the FPGA is shipped to the end user. The next

!’Ig
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time power is applied to the FPGA (which may happen outside the customer's premises)
the following steps will take place:

1. The FPGA begins to load the secure bitstream from the nonvolatile
memory and determines from the header flags that it is a secure bitstream.

2. The security circuitry processes the secure bitstream using the
secret information in the device ID register to verify it and create a standard insecure
bitstream.

3. This standard bitstream is passed on to the configuration circuitry
which loads it into the configuration memory.

4. Assuming the security circuitry does not detect any problems with
the bitstream the FPGA is enabled and operates normally after configuration. If a problem
is detected the security circuitry might blank the on chip conﬁguraﬁon memory and
disable the user input/output pins or take other appropriate steps to ensure the spurious
design is not activated.

At any time the user can reprogram the external memory with a new
design: if security is required the FPGA will generate a new ID code and encrypt it using
the method outlined above.

This invention provides a cryptographic security protocol which previ:nts
unauthorized third parties from either reverse engineering or making functional pirate
copies of FPGA bitstreams. This invention further provides security without
compromising the ease of manufacture of the SRAM FPGAss, without complicating the
Computer Aided Design tools for the SRAM FPGAs and without removing the user's
ability to reprogram the SRAM FPGAs many times.

Advantages of this method of securing FPGA bitstreams include:

1. The cryptographic key is never transferred outside the chip making
it very difficult for unauthorized parties to obtain its value.

2. The FPGA CAD tools need only produce standard, unencrypted
bitstreams and need not keep track of device identifiers.

3. The user may change the design to be implemented by the FPGA at
any time simply by reconfiguring the external memory with a new design.

4, A manufacturer may install identically configured serial EPROMs
on all boards without compromising security, provided that the boards are powered on at

least once before leaving his facility.
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5. The technique is “upwards compatible” with existing methods of
configuring FPGAs: thus an FPGA can be created which is compatible with prior art
bitstreams as well as supporting this secure technique.

Thus, this technique provides the design security offered by nonvolatile
FPGA technologies without compromising the density, performance or ease-of-use of
SRAM FPGAs.

Bitstream Format

It will be appreciated that FPGAs are used in many different systems, for
this reason modemn FPGASs offer many configuration modes. These may include
configuration directly from a serial EPROM, configuration in a chain of FPGAs from the
next FPGA in the chain, configuration from a paralle]l EPROM and configuration from a
microprocessor. In almost all cases, independent of the format in which the configuration
information is presented to the pins of the FPGA it is converted inside the chiptoa

- stream of ordered data bits which constitute the complete programming information for

the memory. Therefore for the sake of clarity we will treat the configuration as a simple
stream of serial data. Means for converting between the various parallel and serial
configuration formats used in commercial FPGAs and a serial stream of data would be
known to one skilled in the art.

Figure 6 shows a preferred format for bitstream information for a secure
FPGA according to this invention. Data is loaded into the FPGA starting with the
Preamble 80 and continues in order down to the Message Authentication Code MACQC)
88. The MAC 88 and initial value (IV) 84 are needed by a preferred cryptographic
algorithm and will be discussed in a later section. Header 82 is discussed later this
section. Configuration data 86 is simply an encrypted version of the normal configuration
data for the FPGA architecture. The preferred encryption algorithms do not change the
structure or length of the data they encrypt (except that a small number of padding bytes
may be added).

The header information is not encrypted and specifies the class of
bitstream information which follows. Possible classes of bitstream include:

1. Normal, unencrypted bitstream. The FPGA loads the bitstream
directly into configuration memory in the same way as a prior-art SRAM programmed
FPGA.
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2. Unencrypted bitstream to be secured with randomly generated key.
The FPGA loads the bitstream, generates a key using the on-chip random number
generator, stores the key in on-chip nonvolatile memory, reads out the bitstream from
configuration memory encrypts the bitstream and stores it back into the external memory,
setting the header information to indicate a secure bitstream.

3. Unencrypted bitstream to be secured using the currently installed
key. The FPGA loads the bitstream. If no key is currently installed, generates a key using
the on-chip random number generator and stores the key in on chip nonvolatile ID
register memory. It then reads out the bitstream from configuration memory encrypts the
bitstream and stores it back into the external memory, setting the header information to
indicate a secure bitstream.

4. Unencrypted bitstream to be secured using a épeciﬁed key. In this
case the key is included in the header information and is written directly to nonvolatile on

chip memory. The FPGA then loads the unencrypted bitstream, reads it back out from

- configuration memory, and encrypts it using the key storing the encrypted bitstream with

a header indicating a secure bitstream and without the key information back in the
external memory.

5. Secure bitstream. The FPGA decrypts the bitstream using the key
in the on-chip nonvolatile storage and loads the decrypted bitstream into configuration
memory.

One of skill in the art would recognize that the class of bitstream
information can be encoded in a small number of bits within header 82. Further,
depending on the specific embodiment of the invention, it is not necessary for a secure
FPGA to implement all the options outlined above. Depending on the classes of bitstream
supported status register 74 may not be required.

When providing a bitstream to be secured an additional control bit is
useful to specify that when the key register is written it should be locked down to prevent
further changes. When lock down is used with a randomly generated key then it prevents
the FPGA bitstream being changed—since the key will not be known off-chip. When
lockdown is used with a specified key it prevents anyone who does not know that key
from reprogramming the FPGA. The lockdown feature can be implemented using a bit in
Status Register 74 to indicate to Security Circuitry 64 that the key should not be changed.
This is particularly useful for FPGAs whose configuration information is to be updated at

a distance—for example via the internet.
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In some cases it may be desirable to make a secure FPGA which can also
be configured by an insecure bitstream for a previous generation FPGA. FPGA bitstreams
normally start with a “preamble” consisting of a sequence of words of a particular value,
for example 55 (hexadecimal) 01010101 (binary). This preamble is used by the
configuration circuitry to identify the start of the bitstream information. It is easy to .
specify a new preamble, for example CC (hexadecimal), 11001100 (binary) for bitstreams
in the new format which contain security information. If this is done the FPGA can
immediately determine whether it must load a bitstream for a prior-art FPGA without

security information or a new format bitstream and process it accordingly.

External Nonvolatile Memory

Serial EPROMs which are based on In System Programmable (ISP) Flash
EPROM technology are available from several suppliers including Atmel Corporation.
These devices have the advantage that they can be programmed many times while
operational in the system—unlike standard EPROM chips no special programming
equipment is required. These devices are becoming popular since they allow a
manufacturing flow in which the programming information is loaded after the board is
assembled and also provide a means by which the programming information can be
updated—for example to improve the product or correct errors. In System Programmable
Flash memories with a conventional parallel interface are commodity components
available from a large number of manufacturers.

The presently preferred embodiment of external memory 32 is an ISP
programmable serial EPROM which allows an FPGA as described here to write out a new
programming configuration to its nonvolatile memory. All that is necessary is that the
FPGA contain circuitry which can implement the ISP nonvolatile memory programming
specification. Atmel Corporation, application note "Programming Specification for
Atmel's AT17 and AT17A series FPGA configuration EEPROMs", 1999 documents the
requirements for one family of ISP serial EPROM:.

Some FPGA configuration modes allow for programming by a
microprocessor or other device rather than a memory directly coupled to the FPGA. In
this case the transfer of data is controlled by the external agent rather than the FPGA
itself. The method of secure configuration described here can equally well be applied in
this case provided that the microprocessor is programmed to read the new (encrypted)

configuration information back from the FPGA. The microprocessor can easily determine

18 /7



WO 01/46810 PCT/GB00/04988

10

15

20

25

30

whether encrypted bitstream information will be written back out by checking the header
information in the bitstream file it transfers into the FPGA. The microprocessor must then
write this encrypted information into some nonvolatile storage medium and erase the
previous unencrypted bitstream information.

Another interesting configuration mode, shown in figure 3, is offered in
the Triscend E5 series CSoC whose data sheet was referenced above. In this mode a
bitstream is downloaded to the ES chip through a Joint Test Action Group (JTAG)
interface during manufacture, the ES chip itself then executes a programming algorithm
to program the bitstream into an external EPROM or FLASH EPROM. This kind of
flexibility is made possible by the fact that the ES has an on-chip microcontroller not
present on standard FPGAs. This mode of configuration can easily be secured using the
technique of this invention—in this case the download of the insecure bitstream through
the JTAG interface during manufacture replaces the initial loading of the insecure
bitstream from the serial EPROM. The chip can encrypt the bitstream as it passes through
and program the encrypted values into the external nonvolatile memory. Alternatively,
the chip could program the on-chip configuration memory, then subsequently read back
the configuration memory, encrypt the data and program the external memory.

Security Unit

Security cifcuitry 64 should be able to prevent secure configurations which -
have been illegally copied from being activated and protect customer designs by
preventing reverse engineering of the bitstream. Some customers may only require
protection from pirated bitstreams whereas other customers may be most worried about a
competitor reverse engineering their design. Since cryptography is regulated by many
governments it may be that the strongest practical cryptographic protection is not
desirable commercially.

The textbook, "Applied Cryptography," by Bruce Schneier 2nd Edition.
John-Wiley, 1996 gives sufficient detail to allow one skilled in the art to implement the
various cryptographic algorithms discussed below. It also includes computer source code
for many of the algorithms.

The presently preferred technique for use in the security circuitry 64 is a
symmetric block cipher in Cipher Block Chaining (CBC) mode. Many such ciphers are
known in the art and would be suitable for this application including RC2, RC4, RC5 and
IDEA. The best known such cipher is the Data Encryption Standard (DES). DES is often
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operated in a particularly secure mode called Triple DES in which the basic DES function

is applied three times to the data using different keys: the details are presented on page

294 of the Schneier textbook referenced above.

Cipher Block Chaining mode is explained in detail in the section starting

on page 193 of the Schneier textbook, the computation of the Message Authentication

Code is described on page 456. These techniques have also been described in various

national standards documents and are in common use in the industry.

application:

Cipher Block Chaining mode has two important advantages in this

1. The feedback mechanism hides any structure in the data. FPGA

configurations are very regular and large amounts of information about the design could

be determined if a simpler cipher mode (for example Electronic Code Book (ECB)) was

used in which the same input data would always be encrypted to the same output data.

For example if the word 0 happened to occur very frequently in the bitstream (perhaps

- because 0 was stored in configuration memory corresponding to areas of the device not

required by the user design) then the encrypted value for 0 would occur frequently in the

output data. An attacker could easily determine which areas of the device were not used

by the customer design simply by looking for a bit pattern which occurred very

frequently.

2. The feedback value left at the end of the encryption can be used as

a Message Authentication Code (MAC) in the same way as the value computed by a
secure hash algorithm. The MAC is also appended to the bitstream and verified after

decryption.

In a preferred embodiment of this invention, the Initial Value (IV) required

in CBC mode is created using the on-chip random number generator and saved as part of

the header before the configuration information. As shown in figure 6, the IV 84 is stored

unencrypted as part of the bitstream, its function is to ensure that if the same, or a similar

bitstream, is encrypted with the same key, a completely different set of encrypted data
will be produced. The IV is particularly important if the on-chip key memory is

implemented in a technology which can only be written once (for example antifuse). The

IV is of less value in the situation where a new key is generated and stored each time a

new bitstream must be secured as is the case in the preferred embodiment of this

invention.
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It should be noted that although the IV is preferably a random number this
is not strictly necessary as long as it is ensured that a different IV will be used each time a
bit stream is encrypted.

Many ciphers operate on fixed length blocks of data—for example DES
operates on blocks of 8 bytes of data. If the length of the data to be encrypted is not a
multiple of 8 bytes then it is necessary to “pad” the data out prior to encryption. This
padding can easily be removed after decryption and is a maximum of 7 bytes long.
Standardized techniques for applying and removing this padding are well known in the
art.

Although triple DES in Cipher Block Chaining mode is the presently
preferred embodiment of the security circuitry it will be appreciated by one skilled in the
art that there is a very wide choice of suitable encryption functions. The choice of
encryption function may be influenced by regulatory and patent licensing issues as well

as technical requirements such as security, silicon area required for implementation and

- speed of processing. For example, alternative embodiments of this invention might use

Cipher Feedback Mode (CFB) instead of CBC mode, a stream cipher instead of a block
cipher or an alternative block cipher instead of DES.

ID Register

There are several ways of implementing nonvolatile ID register 62 and
status register 74 for use with this invention:

1. Battery back up. When the main power supply to the FPGA is lost
a separate battery maintains power to the ID register circuitry. In a prior-art technique, the
battery provides power to the whole FPGA maintaining the state of the main
configuration memory. In accordance with one embodiment of this invention a secure
FPGA chip is implemented as shown in Figure 7 so that the ID register 64 is contained in
a separate area of the device with a dedicated power supply Vdd2. Power supply Vddl1
supplies non-battery backed circuits 90 on the device which may include the security and
configuration circuits, the configuration memory and the user logic. Care must be taken
with signals that cross between areas of the device powered by different supplies to
ensure that power is not drawn from the battery backed circuits into the main circuit area
when the main circuit is not powered. In a CMOS technology it is important to ensure
that the parasitic diodes between areas of source/drain diffusion and the surrounding weli

or substrate located in an unpowered area of the chip but connected to a signal in a
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powered area cannot be forward biased. One way to do this is to ensure that outputs from
the battery backed circuitry only connect to MOSFET gates in the main circuit and
outputs from the main circuit only connect to MOSFET gates in the battery powered
circuit. This implies there will be no connections which have source/drain diffusions on
both sides. In this case the power drawn from the external battery via supply Vdd2 will be
extremely small (on the order of microamps) since only a very small amount of circuitry
is being powered: this will increase battery life and may allow an alternative energy
source to be used which gives effectively unlimited battery life. Various such energy
sources have been developed for use in powering watch circuits (e.g. kinetic generators
and capacitors charged from small solar cells).

2. Floating gate memory cells. U.S. patent 5,835,402 to Rao and
Voogel "Nonvolatile Storage for Standard CMOS Integrated Circuits" teaches a circuit
technique by which small areas of nonvolatile memory using floating-gate transistors can
be implemented on a standard CMOS process, normally such memories require higher
voltages for programming and transistors which come in contact with these voltages
require special processing to prevent gate-oxide breakdown. This is the presently
preferred implementation technique for the on-chip nonvolatile memory.

3. Fuse or antifuse technologies. Fuse and antifuse technologies have
been widely applied in programmable logic devices and would be suitable for use in this
register. In addition it has been suggested that deliberately causing breakdown of
transistor gate oxide by applying too high a voltage could be used to create a write-once
nonvolatile memory.

4. Programming during manufacture. The FPGA manufacturer could
program the ID register with a secret value during manufacture (for example by using a
laser to cut links, or an externally generated high voltage to configure floating gate
transistors or antifuses). This makes the circuit design of the FPGA less complex at the
éxpense of some security since the customer must trust the FPGA manufacturer not to
make improper use of its knowledge of the device ID.

Since it is highly desirable that conventional CMOS processing flow is
used it may be that the nonvolatile memory cell technology (e.g. floating gate transistors)
is less reliable than that implemented using special processing flows. Since the number of
memory cells required is small (probably less than 200) it is possible to provide more
memory cells than are strictly needed without significantly impacting chip area. This

allows the use of error correcting codes (ECCs) to produce a reliable memory from a
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larger unreliable memory in the same way as coding is used to produce a reliable
communications channel from a higher capacity unreliable channel. Error correcting
codes are also commonly used with optical media such as CD-ROMs. There is a well
developed theory of error correcting codes (see, for example, "Digital Communications”
by Proakis, 3rd edition published by McGraw Hill, 1995) and a suitable code could be
developed by one skilled in the art to suit the characteristics of a particular nonvolatile

storage technology.

Random Number Generator

Random number generators have been developed for use on integrated
circuits by many companies. They are a useful component of many common security
systems, particularly, smart cards. Many prior art random number generators would be
suitable for use in this invention.

A presently preferred implementation of an on-chip random number

- generator for use in this invention is disclosed in U.S. patent 5,963,104 to Buer "Standard

Cell Ring Oscillator of a Nondeterministic Randomiser Circuit". This reference shows
how to implement a cryptographically strong random number generator using only
standard logic components from a standard cell library. It demonstrates that no specially
designed analog components or special processing is required to implement a random

number generator on a CMOS chip.

Configuration Circuitry

The secure FPGA requires that the security circuitry can encrypt the
bitstream information and write it back out to the off-chip nonvolatile memory. This is
most efficiently achieved by reading back the FPGA configuration memory. Most
commercially available SRAM programmed FPGASs provide the ability to read back the
bitstream from the control memory for diagnostic purposes so this does not require any
special circuitry.

If a secure bitstream is loaded and off-chip circuitry requests read back of
the on-chip memory using the programming interface the security circuitry must either
block the request or encrypt the bitstream before passing it off-chip.

Implementation of Security Circuits
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While in a presently preferred embodiment of this invention the security
circuits above are implemented conventionally as a small mask programmed gate array on
the integrated circuit there are other attractive ways of implementing them.

In another embodiment of this invention a small microcontroller on the die
with an associated on chip Read Only Memory (ROM) to store program code is used to .
implement some or all of the programming and security functions.

In yet another embodiment areas of the FPGA itself are used to implement
logic functions such as random number generators and encryptors. Bitstream information
for these functions would be stored in an on chip ROM, in the same way as the
microcontroller code in the previous embodiment. This technique is most practical with
FPGAs which support partial reconfiguration and requires careful planning to ensure that
circuitry implemented on the FPGA to implement configuration ftincﬁons is not
overwritten by the bitstream until it is no longer required to support configuration. For
example, the random number generator circuit can be loaded and used to produce a
random number which is stored in the on-chip nonvolatile memory. After this number is
stored it is safe to overwrite the area of the FPGA implementing the random number
generator. Even the decryption circuitry can be implemented on the FPGA if a buffer
memory is used so the decrypted bitstream information does not need to be immediately
written into the device configuration memory. Most modern FPGAs contain RAM blocks
for use in user designs—these memories could be used to buffer decrypted configuration
information. The complexity of this technique means that it is presently not a preferred

method of implementing the security circuitry.

Extension to Partially Configurable FPGAs

Although, for ease of explanation the configuration information is
presented as a stream of ordered data which configures the entire FPGA control memory
this is not the only possibility. FPGAs have been developed, such as the Xilinx XC6200,
in which the control memory is addressable like a conventional SRAM. The configuring
circuitry presents both address and data information in order to configure the chip and it
is possible to configure sections of the device without interfering with the configuration
or operation of other areas.

An FPGA which supports partial reconfiguration may be programmed by a
sequence of bitstream fragments, each of which configures a particular area of the device.

With dynamic reconfiguration some areas of the device may be configured more than
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once. From the point of view of this invention each bitstream fragment can be loaded and
verified independently and would have its own cryptographic checksum. The semantics
of the configuration data (for example whether it is a sequence of address, data pairs or a
code which identifies a particular area of the device followed by a stream of data) does
not make any difference to the security circuitry. |
When a user design consists of multiple bitstream fragments the FPGA
must not create a new cryptographic key for each segment. However, each encrypted
bitstream segment will have a different Initial Value (IV) applied so this does not

compromise security.

Application to Secure Bitstream Download

Many companies are becoming increasingly interesfed in methods for
downloading FPGA bitstreams to a product after shipment to the end user. This allows a
company to correct bugs in the design captured in the bitstream shipped with the product

 or to upgrade the product to a higher specification. This technique is particularly

applicable to FPGAs which are installed in equipment connected to the internet or the
telephone system.

There are obvious security concerns with this technique—a malicious
party or a simple error could result in an incorrect bitstream being downloaded. An
incorrect bitstream could potentially damage the product or render it inoperative. The
incorrect bitstream might be downloaded to a very large number of systems in the field
before a problem became apparent. Thus, it is desirable to implement a cryptographic
protocol to secure downloads of bitstream information. An attractive method of
implementing this protection is to use a symmetric cipher in cipher block chaining mode.
However, in this application the secret key installed in the equipment must be shared with
computer software at the equipment manufacturer's facility in order that the manufacturer
can encrypt the bitstream prior to transmission over the public network.

It is desirable that the secret key for securing bitstream download stored in
the equipment is protected from unauthorized access. One way of doing this is to store it
on the FPGA chip in an ID register. This is quite practical but it is not necessary if the
FPGA is implemented according to this invention because the off-chip nonvolatile
memory is already cryptographically secured. Thus the key for downloading bitstreams
can be safely stored with the rest of the FPGA configuration information. This has the
advantage that the FPGA is not limited to a particular cryptographic algorithm or key
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length for secure bitstream download. This is important because communications security
protocols on the internet and telecommunications industry are in a continuous state of

flux and are not under the control of any particular manufacturer. FPGA customers are

likely to wish to use a variety of download security protocols according to the

requirements of the particular system they are designing. .
Figure 8 shows an FPGA 100 according to this invention which supports

secure download of bitstream information. Random number generator 72, ID register 62,
status register 74, configuration circuitry 12, and configuration memory 14 have the same
function as in the description of Figure 5 above. User logic 106 is shown in this diagram
but has been omitted from earlier figures: in this case a portion of the user logic is used to
implement the download security algorithm. Data 104 from a communications network is
supplied to the user logic through conventional user input/output pihs on the FPGA. On-
chip connection 102 between the security circuitry and the user logic is provided to

transfer downloaded program data to the security circuitry after decryption by the user

- logic. The security circuitry will then encrypt this data using the key in ID register 64

before storing it in external memory 32. Thus the plain-text programming data is never
available off-chip where it could be monitored by a malicious party.

Configurable System on Chip (CSoC) integrated circuits are particulérly
suited for use in applications which involve secure download of programming
information because their on-chip microcontroller is better suited to implementing the
more complex cryptographic functions required by standardized security protocols like
Secure Sockets Layer (SSL) than the programmable logic gates on an FPGA. The
principle of using encryption to protect program and configuration information illustrated
in figure 8 is equally applicable to a CSoC. On a CSoC a combination of microcontroller
software and fixed function logic gates would be used to implement the units illustrated in
figure 8. As well as a configuration memory for the user logic an on chip program and
data memory for the microcontroller would be provided. Connection 102 might be
implemented by using microcontroller instructions rather than a physical wire on the chip,
however the important constraint that the unencrypted configuration data is never be
transferred off chip would remain.

Conclusions
The reader will see that the security system of this invention allows an

FPGA or microcontroller with a large on-chip memory to securely restore the state of that
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memory from an off-chip nonvolatile memory while maintaining the ease of use of a prior
art FPGA or microcontroller.

While the description above contains many specific details, these should
not be construed as limitations on the invention, but rather as an exemplification of one
preferred embodiment thereof. Many other variations are possible. .

Accordingly, the scope of the invention should be determined not by the
embodiments illustrated but by the appended claims and their legal equivalents.
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CLAIMS

1. Afield programmable gate array comprising:

a serial interface for loading initial configuration and key information;

an on-chip memory for storing the cryptographic key, wherein the on-chip
memory is to be coupled to an external backup battery;

a triple-DES encryption circuit; and

an interface to an external non-volatile memory for storing encrypted

configuration data.

2. Amethod for securely configuring an FPGA comprising:

loading key information into an on-chip register, wherein the on-chip register is to
be connected to an external backup battery;

loading an initial configuration through a JTAG interface; and

storing an encrypted version of the configuration in an external non-volatile

memory.

3. Afield programmable gate array comprising:

a plurality of static random access memory cells to store a configuration of user-
configurable logic of the field programmable gate array;

an ID register to store a security key;

a decryption circuit to receive and decrypt a stream of encrypted configuration
data using the security key, and generate decrypted configuration data for configuring
the static random access memory cells;

afirst positive supply input pin coupled to the static random access memory cells,
user-configurable logic, and decryption circuit; and

a second positive supply input pin coupled to the ID register, wherein the second
positive supply input is to be connected to an external backup battery.

4.  The field programmable gate array of claim 3 wherein when power is removed
from the first positive supply input pin, the configuration of the static random access
memory cells is erased, and the security key stored in the ID register is maintained by
the external backup battery.

5. The field programmable gate array of claim 4 wherein the external backup battery

only supplies power to the ID register.
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6.  The field programmable gate array of claim 3 wherein the decryption circuit

decrypts the stream of encrypted configuration data using a triple-DES algorithm.

7. The field programmable gate array of claim 3 further comprising:
a random number generator circuit to generate the security key.

8.  The field programmable gate array of claim 5 wherein a current draw on the

external backup battery is about a microamp or less.

9.  The field programmable gate array of claim 5 wherein current draw on the
external backup battery is about 10 microamps or less.

10. A circuit comprising:

a field programmable gate array, comprising:

a plurality of static random access memory cells to store a configuration of user-
configurable logic of the field programmable gate array;

an ID register to store a security key;

a security circuit to receive and process a stream of configuration data using the
security key;

a first positive supply input pin coupled to the static random access memory cells,
user-configurable logic, and security circuit; and

a second positive supply input pin coupled to the ID register;

a power supply connected to the first positive supply input pin, to provide
operating power to the static random access memory cells, user-configurable logic, and
security circuit; and

a battery connected to the second positive supply input pin, to provide power to
the ID register.

11. The circuit of claim 10, wherein the battery provides backup power to the ID
register, to maintain the security key stored in the ID register when the power supply is

not active.

12.  The circuit of claim 10, wherein when the power supply is not active, the
configuration of the static random access memory cells is erased, and the security key

is maintained by the battery.



10

amsan~
emnaa
ense

e oea

- -

Y

saae
eaan

- e~
eaan

27

13. The circuit of claim 12, wherein the battery supplies power only to the ID register.

14. A field programmable gate array substantially as hereinbefore described with
reference to Figures 5 to 8.

15. A method for securely configuring an FPGA, the method substantially as
hereinbefore described with reference to Figures 5 to 8.

16. A circuit substantially as hereinbefore described with reference to Figures 5 to 8.



