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Abstract This paper describes the package of test bench 
code required to verify the Algotronix’ AES IP Core.  Several 
authors (see the references in [3]) have published papers 
detailing the implementation of the Advanced Encryption 
Standard (AES) on FPGA chips; however, the design goals of 
this AES core are somewhat different from previous work.  
Rather than emphasizing performance our design emphasizes 
portability and customer confidence in the security of the 
VHDL code.  

1. Introduction The AES algorithm was accepted by the 
National Institute of Standards and Technology (NIST) of the 
United States as a Standard in November, 2001 [1]. We present 
a VHDL model of the AES algorithm and the complete test 
bench for its verification according to the NIST requirements in 
“The Advanced Encryption Standard Algorithm Validation 
Suite (AESAVS)” [2].  

In most applications AES hardware performance can easily 
exceed the ability of the system to supply data; therefore 
Algotronix believes the emphasis on raw performance in the 
literature is misplaced.  Moreover, the performances quoted are 
for pipelined designs.  Pipelining cannot be used in common 
applications where AES is run in Cipher Block Chaining 
(CBC) mode with a single stream of data because of a feedback 
loop which prevents encryption of the next word of data 
beginning until the ciphertext of the previous word is available. 
Algotronix has created an IP core design that is area efficient 
and is portable between FPGA families and between FPGAs 
and ASICs so that customers can make the most cost effective 
technology selection.    

Cryptographic cores are different from most Intellectual 
Property cores because, as well as the possibility of design 
errors customers must consider the possibility of intentional 
and malicious features being added to the design. In sensitive 
applications of cryptographic IP cores customers will require to 
inspect the core source code -   this may be mandated by 
certification schemes such as Common Criteria. Only a source 
code review can demonstrate that there is no ‘backdoor’ 
mechanism incorporated in the core which would compromise 
security.  A simplistic example of a backdoor would be a 
design which, when provided with a certain pattern of input 
data, caused the secret key to be written to the ciphertext 
output.   If the pattern which triggers the key to be written is 
128 bits long it would be almost impossible to detect the 
backdoor using test vectors.  More subtle and harder to detect 
variants of this attack are possible. We believe that FPGA IP 
Core designs which are heavily optimized for performance at 
the expense of code simplicity and supplied as ‘black box’ 
generated netlists are less appropriate for high security 

applications than simpler cores supplied as HDL source 
code.    

2. Test Bench The test bench consists of three main 
components: Known Answer Test, Monte Carlo Test, and 
Multi-block Message Test [2]. Each of them involves four 
particular test benches to verify various ciphering processes 
(encryption in the Electronic Code Book (ECB) mode, 
encryption in the Cipher Block Chaining (CBC) mode, 
decryption in the ECB mode, and decryption in the CBC mode) 
as shown in the table below. 

Test Suite 
AES Cipher 
Mode 

Known 
Answer 
Test (KAT) 

Monte 
Carlo Test 
(MCT) 

Multi-block 
Message 
Test (MMT) 

Encrypt Encrypt Encrypt ECB 
Decrypt Decrypt Decrypt 
Encrypt Encrypt Encrypt CBC 
Decrypt Decrypt Decrypt 

 
2.1 Known Answer Test The NIST Known Answer Test 
(KAT) provides comprehensive coverage of all components of 
the implementation by applying a set of plaintext (or ciphertext 
in the case of decryption tests), key, and initial value to the 
implementation and checking that the correct ciphertext 
(plaintext) is generated. The various KAT tests are intended to 
stress different elements of the implementation. The valid 
expected responses on the KAT tests along with input data are 
tabulated in the appendixes B, C, D, E to the document [2]. 

2.2 Monte Carlo Test The function of the Monte Carlo 
Tests (MCT) is somewhat different. The KAT tests provide 
confidence that there are no implementation errors in the 
design. However, it would be possible to create an AES design 
which passes all the KAT tests (since the responses are known 
in advance) but behaves improperly on some other values. For 
this reason a particular set of test vectors and known-answers 
are not specified in the MCT test. Instead a generic method of 
iteratively running the AES algorithm is specified.  In formal 
compliance testing the actual starting value for Monte Carlo 
testing is chosen by the NIST accredited laboratory to which 
the design is submitted. 

Each Monte Carlo Test is organized as a sequence of 100 
multi-block messages of 1000 blocks each. Hence any MCT 
test involves 100,000 encryption (or decryption) operations. 

Monte Carlo testing using the NIST specified conditions 
requires a long simulation time because it involves 100,000 
runs through the implementation under test.  The test bench 



allows the user to specify the conditions (m - the number of 
messages and n - the number of blocks in the multi-block 
message) of the Monte Carlo Test.  This allows fast 
preliminary testing with smaller test sets:  to carry out the MCT 
according with the NIST requirements the user specifies 
n=100, m=1000.   

The AESAVS document [2] supplies some known-answer data 
for two initial iterations of the MCT. In addition we provide a 
wrapper C program around a software implementation of the 
AES which allows the user to generate correct values for their 
own Monte Carlo testing before submitting an application for 
certification to a NIST accredited laboratory.   

The software implementation of AES used for Monte Carlo 
testing is the well known open source implementation by Brian 
Gladman [4] not code written by Algotronix.  Customers can 
download the ‘known good’ AES software used to test the 
VHDL directly from the third party website.  If the C program 
was written by the same person as the VHDL implementation 
there could be a question as to whether they had (possibly 
deliberately) inserted the same faulty logic in both programs so 
that Monte Carlo testing would not detect some error or 
backdoor function hidden in the IP core. 

2.3 Multi-block Message Test The Multi-block Message 
Test (MMT) is designed to verify the ability of the AES 
implementation to process multi-block messages. This test 
involves ten multi-block messages of different length with 
number of blocks from 1 to 10. The MMT test is particularly 
important for verification of the AES implementation in the 
CBC mode (Cipher Block Chaining mode). 

Some sample data sets along with the valid responses of the 
AES algorithm are provided. In addition there is a wrapper C 
program around the software implementation of the AES 
algorithm which allows the user to generate correct response 
values for any MMT input data. 

3. Implementation Details The AES core processes 
data blocks of 128 bits using a cipher key of length 128 bits in 
the CBC and ECB mode only. Encryption and decryption 
processes are implemented as separate designs. The AES key 
expansion process is implemented in the hardware design. 

Rather than using FPGA memory blocks for the algorithm of 
the SubBytes Transformation (and the Inverse SubBytes 
Transformation as well) was expressed with the aid of the eight 
8-variable Boolean functions. To implement them on the 4-
input LUT based FPGA an S-box substitution table was 
automatically converted to the set of 4-input Boolean functions 
by the use of the Shannon expansion under a subset of the four 
variables. Each target 8-input Boolean function is represented 
as the two-level composition of 4-variable functions. Some 
sharing of logic is possible between target functions.  

The VHDL code has initially been mapped to the Xilinx Virtex 
FPGA, but since device specific features such as RAM blocks 
have been avoided it should be highly portable between FPGA 
families and even to ASIC.  Performance details for the basic 
un-pipelined design are given below. Since the design is 
supplied in VHDL source code users can add pipelining as 
required to trade area for performance.  The core is smaller 
than highly pipelined designs described in the recent literature 
(see references in [3]) and has a higher clock frequency. ECB 
mode throughput is lower because there is no pipelining.  In 
CBC mode with a single data stream (which we believe will be 
the most common mode of use) pipelining cannot be used.  
This is because the feedback structure of CBC means the next 
encryption cannot start before the previous one has finished.    

Xilinx XCV300-8 Encryption Decryption 
# Slices & (%) 1,495 (48%) 2,587 (84%) 
# 4-input LUTs 2,455 (39%) 4,795 (77%) 
Gate count 20,541 48,049 
Clock  (MHz) 51.1 47.5 
Speed grade -8 -8 

 
Conclusion The combination of a simple, portable and 
efficient AES IP core supplied as VHDL source code with a 
comprehensive test bench provides an excellent platform for 
high security applications.   

The test bench described here can also be used (with minor 
modifications to the wrapper code) to provide additional 
confidence in AES cores bought from other vendors or 
developed in house.  Using a test bench from an unrelated party 
provides additional confidence that the test bench has not been 
manipulated so that it will not detect backdoor code in a 
particular AES implementation.   
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